Rate This Resource


All plants need certain mineral elements for proper growth, development, and maintenance. The basic structure of all organisms is built of carbon (C), oxygen (O) and hydrogen (H). Plants obtain these elements from water (H2O) in the soil and carbon dioxide (CO2) in the air, so no input is required beyond being sure the plant has an adequate water supply to meet its needs. Turning the H2O and CO2 into organic building blocks, however, is a complex process that requires the assistance of at least 13 other elements.

Three elements, nitrogen (N), phosphorus (P), and potassium (K), are required in relatively large quantities and are referred to as primary or macronutrients. N is an important component of all protein, so is integral to the plant structure. P is a minor component of protein, but is integral to the molecules that control energy flow within the plant and is a component of genetic material. The role of K seems to be in maintaining the correct salt concentration in the plant sap. N, P, and K, in varying ratios, are the primary constituents of all chemical fertilizers. Depending on the fertilizer origin, their amounts present may be expressed as N, P2O5, and K2O.

What's inside:

  • Introduction
  • How do I tell whether the soil contains what a plant needs?
  • What deficiency symptoms should I be looking for?
  • How do I assure that nutrient supplies in soil are maintained?
  • Relationship of cropping systems and soil fertility
  • Bibliography

 


Read Online


TN #57 An Introduction To Soil Fertility

Robert Harter

All plants need certain mineral elements for proper growth, development, and maintenance. The basic structure of all organisms is built of carbon (C), oxygen (O) and hydrogen (H). Plants obtain these elements from water (H2O) in the soil and carbon dioxide (CO2) in the air, so no input is required beyond being sure the plant has an adequate water supply to meet its needs. Turning the H2O and CO2 into organic building blocks, however, is a complex process that requires the assistance of at least 13 other elements.

Three elements, nitrogen (N), phosphorus (P), and potassium (K), are required in relatively large quantities and are referred to as primary or macronutrients. N is an important component of all protein, so is integral to the plant structure. P is a minor component of protein, but is integral to the molecules that control energy flow within the plant and is a component of genetic material. The role of K seems to be in maintaining the correct salt concentration in the plant sap. N, P, and K, in varying ratios, are the primary constituents of all chemical fertilizers. Depending on the fertilizer origin, their amounts present may be expressed as N, P2O5, and K2O.