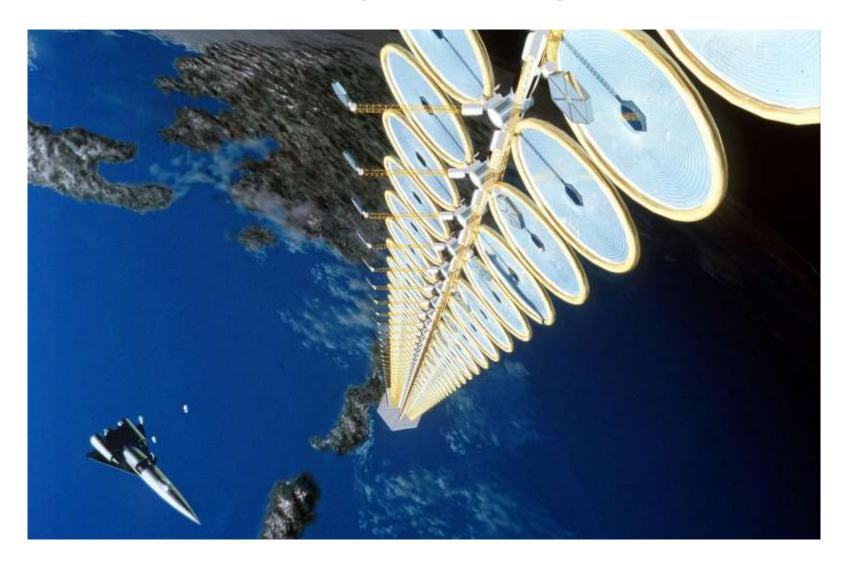
Carbon Farming:

Perennial Crops and Agroforestry for Carbon Sequestration & More

Climate Change



What Must Be Done?

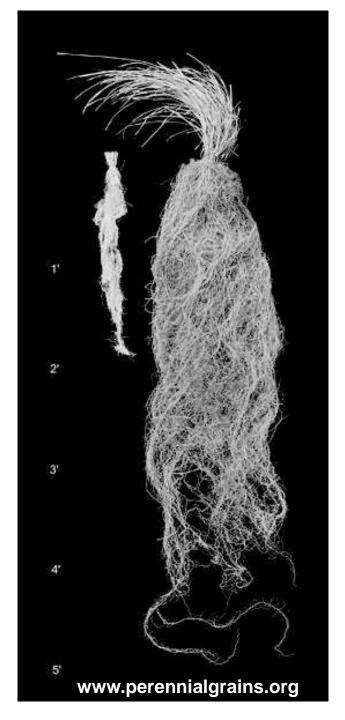
- Back to 300-350ppm CO2
- Pull 200-250 GT carbon from atmosphere
- Reduce emissions DRASTICALLY
- Sequester gigatons of carbon
- Complete society-wide transformation

Geoengineering?

Climate Justice

- •Who causes climate change?
- •Who suffers?
- What mitigation, adaptation, and development (MAD)strategies address this?

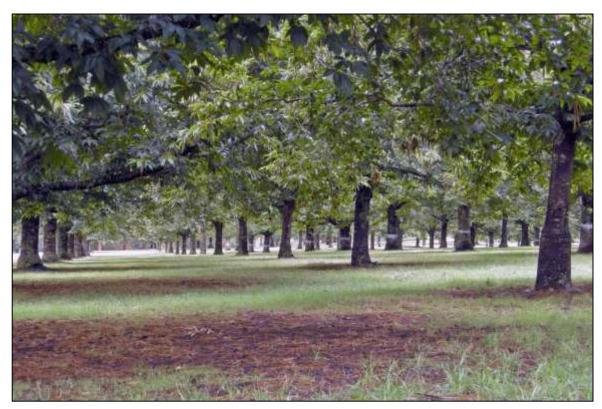
Carbon Sequestration


"The process of removing C from the atmosphere and depositing it in a reservoir...

It entails the transfer of atmospheric CO2 and its secure storage in long-lived pools."

UN Framework Convention on Climate Change (UNFCCC) 2007

Perennials Sequester Carbon


Where the Carbon Goes

CARBON SINK	NOTES
Above Ground Biomass 1/3	50% or less of AGB is carbon
Below Ground 2/3	Mostly in soil aggregates; roots equal 20-40% of aboveground biomass

- Some C losses in both cases
- Challenging, non-standardized measurement

Agroforestry can *equal or beat* adjacent forests

In long-lived, densely-treed systems

P.K. Nair, "Methodological Challenges in Estimating Carbon Sequestration Potential of Agroforestry Systems" in *Carbon Sequestration Potential of Agroforestry Systems*

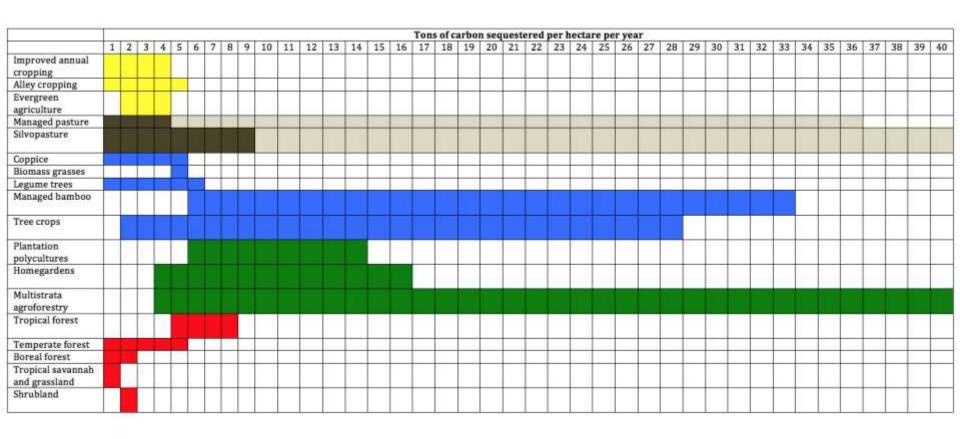
Creative Commons 3.0

Enormous Potential

- IPCC notes 630,000,000 ha expansion possible
 - an area twice the size of India
- At 30-300 T/ha lifetime in soil
- 18.9-189 GT over 20+ years
 - Of 200-250 GT needed

Multiple Benefits

- Avoided deforestation (5-20 ha/ha)
- Reducing emissions
- Ecosystem services
- Soil improvement, erosion control
- Restore degraded land
- Food and fodder in hungrey seasons
- Increased yields
- Food security



Drawbacks

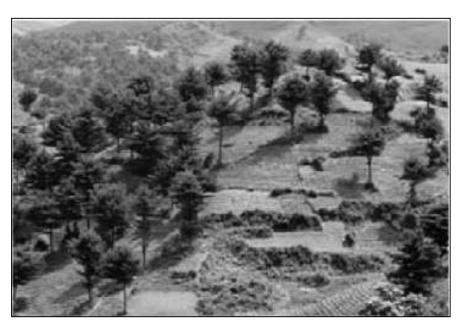
- Some crops and practices lower yields
 - Especially in colder and drier climates
 - Balance vs. intensive annuals on less land
- Other emissions
 - Methane, nitrous oxide
- Water competition
- Invasive species
- Lure of "easy fixes"
- Monoculture and land grabs
- Financial hurdles for farmers
- Change in diet

Carbon Sequestration Rates

Improved Annual Systems

- Low carbon sequestration
- Familiar crops
 - Harvest
 - Process
 - Eat
- Some already widespread

Improved Annual Systems



Annual-Perennial Systems

- Low to medium carbon sequestration
- Familiar crops

Irregular Intercropping

Pinus koraensis, N. Korea

Faidherbida albida, Africa

Strip Intercropping

Alternate Rows

Alley Cropping

Contour Hedgerows

FMNR & Evergreen Agriculture

Farmer-Managed Natural Regeneration

Evergreen Agriculture with Faidherbia albida

Windbreaks and Living Fences

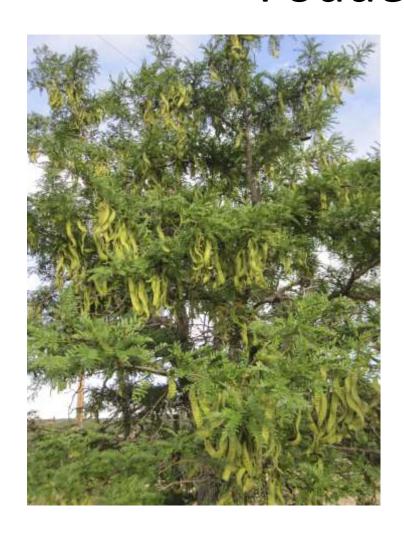
Windbreak Living fenceposts Living fence

Livestock Systems

- Carbon sequestration low to medium
 - Rare instances high
- Livestock eat perennials, we eat them
- Methane offgassing
- 67% of world farmland is pasture

Managed Grazing

Silvopasture



Creative Commons 3.0

Intensive Silvopasture

Fodder Trees

Fodder bank

Fodder pods and fruits

Fully Perennial Systems

- Carbon sequestration medium to high
- New and different crops
- Some undomesticated or hypothetical

Orchards and Plantations

Bamboo, Coppice, and Biomass

willow short rotation coppice

chestnut coppice

Dendrocalamus asper

Gynerium sagittatum

Multistrata Systems

homegardens Sago Festival Saint Martin

multistrata agroforestry Veracruz

plantation polycultures shade coffee under *Inga*

Creative Commons 3.0

Aquaforestry

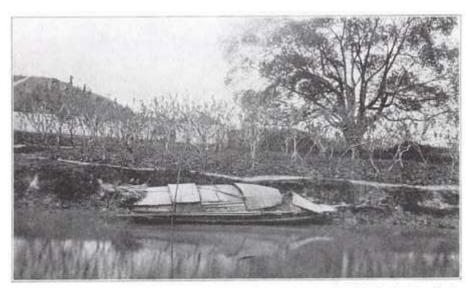


Fig. 94.—Mulberry orchard to which a heavy dressing of canal mud had been applied. A family of mulberry leaf pickers were living in the boat anchored in the canal.

Dyke-pond systems: China

Chinampas Xochimilco

Perennial Grain Systems

- Monocultures
- Polycultures
- Pasture cropping
- Grain-grazing

Creative Commons 3.0

Other Tools

- Carbon sequestration variable
- Biophysical techniques
- Increase carbon sequestration by plants

Rainwater Harvest & Drip Irrigation

Other Tools

Keyline Biochar

TOOLKIT: CROPS

Non-Destructively Harvested Perennial Crops

- Perennial
- No-till
- Not destroyed by harvesting
- Many crops types
 - Food
 - Industrial
 - Agroforestry

Perennial Staple Crops

- Protein
- Carbohydrates
- Fats

Industrial Crops

- Materials
- Chemicals
- Energy

Opportunity

Steer carbon funds to regions in need

ARLOMOM, Senegal